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(57) ABSTRACT

Techniques are disclosed relating to lens modeling. In one
embodiment, a lens model may be generated based on refer-
ence images of a pre-determined, known geometric pattern.
The lens model may represent a spatially variant blur pattern
across the image field of the lens used to capture the reference
images. In one embodiment, the lens model may include
Gaussian approximations of the blur that may minimize the
difference between a location within a reference image and a
corresponding location of a pre-determined, known geomet-
ric pattern. In one embodiment, the generated lens model may
be applied to deblur a new image.
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1
LENS MODELING

PRIORITY INFORMATION

This application claims benefit of priority of U.S. Provi-
sional Application Ser. No. 61/381,375 entitled “System and
Method for Creating Lens Models to Reduce Image Blur”
filed Sep. 9, 2010, the content of which is incorporated by
reference herein in its entirety.

BACKGROUND

1. Technical Field

This disclosure relates to generally to lenses, and, more
specifically, to lens modeling

2. Description of the Related Art

Cameras are light capturing devices. Light rays emanate
from some source, such as the sun, and travel through space
until striking some object. When the light rays reach the
object, the object absorbs much of the light spectrum, and
what is not absorbed is reflected. In the case of cameras, some
of the reflected light enters the optics of the camera and is
collected by the camera sensor (or film) at the image plane.
The geometric configuration of the passage of the light rays,
from the object through the lens(es) to the image plane, can be
described mathematically by a parametric model, which may
be referred to as the camera model.

Camera lenses typically include design compromises,
aberrations, and other imperfections that may introduce the
aberrations into the captured image. Lens aberrations may
include, but are not limited to, geometric distortion, lateral
chromatic aberration, and vignetting. Most, if not all, cap-
tured images include at least some geometric distortion, such
as blur, introduced primarily by the camera lens components.

SUMMARY

This disclosure describes techniques and structures that
facilitate lens modeling. In one embodiment, a lens model
may be generated based on reference images of a pre-deter-
mined, known geometric pattern. The lens model may model
the lens at various settings, including settings not used in the
reference images (i.e., at aunique focal length and/or aperture
from the focal length and aperture used in the reference
images). In one embodiment, the lens model may represent a
spatially variant blur pattern across the image field of the lens
used to capture the reference images. A spatially variant blur
pattern may include minimal blur at the center of an image
field with increasing blur toward the edges of the image field.
The spatially variant blur pattern may also be asymmetric. In
one embodiment, the generated lens model may be applied to
deblur a new image.

In various embodiments, the generated lens model may be
a global or local model. The global lens model may approxi-
mate the blur of an entire image field of a lens while a local
lens model may approximate the blur in a local region of a
lens image field. In some embodiments, multiple local lens
models may be used, with each model approximating the blur
in each local region of a lens image field. In some embodi-
ments, the global or local lens models may include Gaussian
approximations of the blur that may minimize the difference
between a location within a reference image and a corre-
sponding location of a pre-determined, known geometric pat-
tern. Use of Gaussian approximations to model a spatially
variant blur pattern of a lens may yield improvements over
other lens models, yet may conserve computational
resources.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example module that may implement
a lens modeling method, according to some embodiments.

FIG. 2 illustrates an example of a calibration pattern,
according to some embodiments.

FIG. 3 illustrates an image of a calibration pattern with an
example of an area of the image that may be blurred.

FIG. 4 illustrates an example of blur samples using Gaus-
sian parameters that may be generated for a lens, according to
some embodiments.

FIG. 5 illustrates an example of a portion of a global blur
model, according to some embodiments.

FIG. 6 illustrates an example of a portion of a local model
that may be used to predict image blur in local regions of an
image, according to some embodiments.

FIG. 7 illustrates an example of reducing image blur by
applying the lens model to an image, according to some
embodiments.

FIG. 8 illustrates a flowchart of an example method for
creating a lens model, according to some embodiments.

FIG. 9 illustrates an example computer system that may be
used in some embodiments.

While the disclosure is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the disclosure is not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not intended to limit the disclosure to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present disclosure. The headings used
herein are for organizational purposes only and are not meant
to be used to limit the scope of the description. As used
throughout this application, the word “may” is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must). Simi-
larly, the words “include”, “including”, and “includes” mean
including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatuses or systems that would be known by one
of ordinary skill have not been described in detail so as not to
obscure claimed subject matter.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
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cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

Digital cameras may store one or more camera/lens param-
eters in metadata (e.g., EXIF data) of images captured with
the camera. The stored parameters may include: focal length,
focus distance, aperture, and sensor format factor. The focal
length (F) of a camera/lens combination refers to the perpen-
dicular distance from the perspective center of the lens system
to the image plane, also known as the principal distance. The
focus distance is the actual distance of the camera from the
subject being photographed, and may also be referred to as
the subject distance. The lens aperture of a camera, or aper-
ture, refers to the adjustable opening in the iris diaphragm of
a camera that determines the amount of light that will pass
through the lens during exposure. Aperture is typically speci-
fied as an f/number (e.g., /8, {/11). The smaller the f/number,
the more light passes through. The sensor format factor of a
digital camera refers to the dimension of the camera’s sensor
imaging area relative to the 35 mm film format. Specifically
the sensor format factor is the ratio of a 35 mm frame’s
diagonal (43.3 mm) to the diagonal of the image sensor in
question, e.g., diag,s,,,/diag,,,...,- The sensor format factor
may also be referred to as the camera’s crop factor, or the
focal length multiplier.

A lens profile may be defined as a file that contains a model
description for a specific camera body and lens combination.
A lens profile may be read by an image processing application
to specify aberration corrections, including lens aberration
corrections, to images captured with the respective camera/
lens combination. Embodiments of a lens modeling module,
described herein, may generate a lens profile that includes
models for correcting multiple types of aberrations, including
lens aberration corrections, in a single pass from a single set
of captured calibration/reference images, where a single cali-
bration chart is captured in each calibration image from a
different perspective (i.e., unique focal length and aperture
combinations). Such a lens profile may model image blur
which may vary spatially across an image. The lens profile
may include a mathematical model which may be used to
reduce the image blur of a captured image. Some embodi-
ments of the lens modeling module may be implemented, for
example, as a plug-in for or module in an image processing
application.

A captured image may include image blur which may vary
spatially across the image. For example, the center of a cap-
tured image may be sharp, but other areas of the image may be
blurred. The amount of image blur may increase across the
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image, from a minimum (or zero) image blur at the center of
the image to a maximum amount of blur at the image corners.
The amount of image blur at a particular area on the image
may be a function of the spatial location of the area on the
image. In addition, image blur may be asymmetric.

The amount of image blur in a captured image may be a
function of the specific camera body, the lens, and the camera/
lens settings (e.g., focal length and aperture) that are used to
capture the image. The system for generating lens models to
reduce image blur may consider the spatial variation of image
blur across an image and, dependent on the spatial variation,
may generate a lens model for a particular camera, lens and
camera/lens settings. The system may apply the lens model to
reduce blur in a newly captured image.

Various embodiments of a system and methods for creating
lens models are described. In embodiments, multiple images
of a calibration chart may be captured using a camera/lens
combination. The multiple images may be input to a lens
modeling module. The lens modeling module may analyze
the calibration chart information in the multiple images and
generate mathematical models for correcting aberrations,
including lens aberrations, in images captured with the cam-
era/lens combination. Aberrations that may be modeled
include lens aberrations, such as image blur, geometric dis-
tortion, lateral chromatic aberration, and/or vignetting.

Some embodiments may include a means for modeling a
lens profile. For example, a lens modeling module may
receive input reference images of a calibration target as well
as information about the calibration target, and may generate
a lens model that approximates aberrations in the lens, as
described herein. The lens modeling module may in some
embodiments be implemented by a non-transitory, computer-
readable storage medium and one or more processors (e.g.,
CPUs and/or GPUs) of a computing apparatus. The com-
puter-readable storage medium may store program instruc-
tions executable by the one or more processors to cause the
computing apparatus to perform receiving input reference
images of a calibration target as well as information about the
calibration target, and may generate a lens model that
approximates aberrations in the lens, as described herein.
Other embodiments of the lens modeling module may be at
least partially implemented by hardware circuitry and/or
firmware stored, for example, in a non-volatile memory.

Turning now to FIG. 1, lens modeling module 100 may
implement one or more embodiments of lens modeling tech-
niques, as described herein. In the embodiment shown, lens
modeling module 100 may receive reference images 106 and
information (e.g., dimensions, orientation, etc.) from calibra-
tion target 108. Lens modeling module 100 may implement
blur sampling module 102 and blur modeling module 104 and
output a lens model to image correction module 110. Lens
correction module 110 may receive the lens model and a new
image 112 and output a deblurred version of new image 112,
deblurred image 114.

Lens modeling module 100 may receive, as input, a plu-
rality of reference images 106 and information from calibra-
tion target 108. Calibration target 108 may include a black
and white geometric pattern with known, or pre-determined,
proportions. One embodiment of calibration target 108 is
illustrated in FIG. 2. In the illustrated embodiment, calibra-
tion target 108 may consist of a pattern, as shown in the upper
left image of FIG. 2. The portion of the pattern shown in FIG.
2, a white square with five black dots, may be referred to as a
patch, location, region, or area of calibration target 108. Cali-
bration target 108 may be an array of small patches of the
geometric pattern. In one embodiment, each patch may have
at least three straight edges of different orientation. Straight
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edges may be useful in detecting blur because straight edges
that are perfectly reproduced may remain straight while
straight edges that are blurred may result in skewed edges.
The geometric pattern of a patch in calibration target 108 may
be repeated in other patches across the calibration target 108.
One embodiment of calibration target 108 is shown in the
upper right image of FIG. 2. In the embodiment shown, cali-
bration target 108 is mounted to a wall, or other vertical
surface. As shown in FIG. 2, calibration target 108 may
include an alternating pattern of squares with dots, with the
squares and dots alternating colors. For example, the first
square in a pattern may be a white square with five black dots,
the second square may be a black square with five white dots,
the third square may be a white square with five black dots,
and so on. Another example of calibration target 108 may
include patches with diamonds, triangles, circles and other
shapes of various colors. In one embodiment, calibration
target 108 may contain a mathematical definition that may
include information about the dimensions, orientation, col-
ors, shapes, and lines. The known information may be pro-
vided to lens modeling module 100. For example, in one
embodiment, each patch may be a 2 inch by 2 inch white
square, with a single black dot with diameter of 1 inch, cen-
tered in the white square, with calibration target 108 being 40
patches wide by 20 patches high. That information may be
provided to lens modeling module 100.

Turning back to FIG. 1, lens modeling module 100 may
also receive, as input, a plurality of reference images 106 of
calibration target 108. As shown in the upper right image of
FIG. 2, a camera may be mounted on a tripod to capture
reference images 106. Each reference image 106 may be
captured with a unique aperture and focal length combina-
tion. In one embodiment, the plurality of reference images
106 may include four images of calibration target 108. The
four reference images 106 may include: an image taken with
a camera’s minimum focal length and minimum aperture, an
image taken with minimum focal length and maximum aper-
ture, an image taken with maximum focal length and mini-
mum aperture, and an image taken with maximum focal
length and maximum aperture. In one embodiment, the plu-
rality of images includes images taken with intermediate
focal length and aperture settings. In one embodiment, if
calibration target 108 does not fill the camera’s field-of-view
in one or more of reference images 106 with a particular focal
length and aperture, additional images may be taken using
that particular focal length and aperture such that the addi-
tional image(s) collectively cover the camera’s field-of-view.
For each additional image, calibration target 108 or the cam-
era may be moved to a new position to take the image.

One example of a portion of reference image 106 is shown
in the lower middle image of FIG. 2, labeled observed. Note
the blur in the reference image shown in FIG. 2 when com-
pared to the synthetic data. In some embodiments, images of
actual content, rather than images of a calibration pattern,
may be used as reference images 106 for the lens modeling
system. For example, images with content such a night sky
filled with stars may serve as reference images 106 from
which image blur may be sampled. Another example of a
reference image 106 of calibration target 108 is illustrated in
FIG. 3. The example reference image 106 was taken witha 37
mm lens with an aperture of 4.5. As shown, calibration target
108 may include repeated patches of a synthesized pattern. As
discussed herein, lens modeling module 100 may find the
corners of the calibration pattern patches and may use the
circles of the other pattern to estimate an amount of blur (e.g.,
ablur sample) for each instance of a calibration pattern patch.
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The area bounded by the box in FIG. 3 is an example of a
patch of calibration target 108.

Referring again to FIG. 1, lens modeling module 100 may
implement blur sampling module 102 and blur modeling
module 104 to generate a lens model. In some embodiments,
blur sampling module 102 may receive reference images 106
and information from calibration target 108 as inputs. Blur
sampling module 102 may estimate the image blur, which
may include computing a blur kernel, also known as a point
spread function for optical blurs, for small patches of refer-
ence images 106. In one embodiment, each small patch may
be aligned to the mathematical definition of calibration target
108 and a sharp patch may be synthesized, shown in the lower
left image of FIG. 2, labeled synthetic. Then, a blur kernel,
such as a non-parametric blur kernel, may be estimated by
using the small patch and the sharp patch. One example of a
non-parametric blur kernel for a small patch of calibration
target 108 is shown in FIG. 2, in the lower right image labeled
blur kernel. The blur kernel may represent the shape of image
blur for a particular region of an image. A blur kernel may be
larger and in a diagonal orientation toward the corners of a
lens image field. Further, blur kernels may be asymmetric
across a lens image field.

Turning back to FIG. 1 and blur sampling module 102, in
one embodiment, non-parametric blur kernels may be com-
puted to describe the blur in small regions of reference image
106. For each region of a reference image 106, the mathemati-
cal definition of calibration target 108 may be aligned to that
region and a sharp region may be synthesized. In one embodi-
ment, each region of calibration target 108, and as a result,
each region of reference image 106 may be a square with five
circles in the square as seen in FIG. 2. The corners of the
square may be localized and a bootstrap projective homogra-
phy, H, may be computed that may align the calibration target
108 to the square. The homography may be used to rasterize
a synthetic image of the square from its mathematical defini-
tion. In one embodiment, calibration target 108 edges may be
anti-aliased by computing the fraction of the pixel that is filled
and the white/black point may be set to the histogram peaks in
the imaged square. The homography may be iteratively
refined. In the ith iteration, a coarse-to-fine differential reg-
istration technique may be used to compute a projective
homography H, that may align the synthetic square to refer-
ence image 106. The homography may be updated, H«—H,H
and the synthetic image may be re-rasterized. The iterative
process may terminate when H; is close to an identity. The
resulting homography may give sub-pixel alignment between
the mathematical definition of calibration target 108 and the
blurry square of reference image 106.

In one embodiment, non-parametric blur kernels may be
estimated for each square by synthesizing a sharp square from
the aligned calibration target 108. The non-parametric blur
kernel may be a 2D description of what an image of a single
point of light, at a particular location in an image, may look
like when captured with a particular camera and lens, with
particular focal length and aperture settings. A non-paramet-
ric blur kernel may be computed from the variance between
the synthesized calibration pattern and the observed captured
pattern in the image, using a non-parametric function. In one
embodiment, the blur kernel may be computed by using con-
jugate gradient descent to solve the least squares system
Ak=b, where k is the kernel, A is a Toeplitz matrix that
encodes the convolution of the sharp square with the kernel,
and b is the blurry square. The optimization may be computed
in the Fourier domain without explicitly constructing A. In
one embodiment, using conjugate gradient descent may allow
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negative kernel values. If so, they may be removed by thresh-
olding and re-normalizing the kernel.

The blur kernel may be super-resolved because in some
cases, optical blurs may be small. The homography H, which
may be known to sub-pixel accuracy, may be used to synthe-
size ahigh resolution calibration target 108. The linear system
may then become WA k,=WUb, where A and k, may encode
the high-resolution calibration target 108 and kernel. Matrix
U may up-sample b and W may be a weight matrix that may
assign zero-weight to interpolated pixels. By formulating
with U and W, matrix A, may not need to be constructed and
the convolutions may be performed in the Fourier domain.
Computations in the Fourier domain may be faster than non-
negative least squares and a smoothness regularization term
may not be necessary. In some embodiments, the super-re-
solved kernels may be super-resolved by using conjugate
gradient descent to solve WA k =WUDb with W=I. This may
have the effect of putting a smoothness constraint on the
kernel. In one embodiment, the kernels may be super-re-
solved at 3x image resolution.

Non-parametric kernels can describe complex blurs but
their high dimensionality may mask the relationship between
the kernel shape and optical parameters. In one embodiment,
a 2D Gaussian distribution may be computed that may reduce
the dimensionality. The 2D Gaussian distribution may repre-
sent the shape of the image blur (blur kernel). The computa-
tion may be performed in a variety of ways. In one embodi-
ment, a Gaussian may be fitted to the central, connected,
probability mass in the non-parametric kernel using a maxi-
mum likelihood (ML) estimator. Then, the error between the
Gaussian and non-parametric kernel may be minimized itera-
tively. In some embodiments, other algorithms may be used to
approximate the image blur for each patch.

Each blur sample represented may be a location tuple (X,y,
f,a), where x and y may represent an (X,y) coordinate location
on the sensor, f may represent the focal length and a may
represent the aperture setting. Each blur sample may have a
corresponding blur tuple (¢, c,,, cor), where c,, may repre-
sent the x-standard deviation, c,,, may represent the y-stan-
dard deviation, and cor may represent the correlation of the
Gaussian distribution. The elements of the blur tuple may be
the three circled elements of the Gaussian distribution illus-
trated in FIG. 4 as Gaussian Parameters. Also illustrated in
FIG. 4 is an example of blur samples for an image field of
view created by a 37 mm lens with aperture of 4.5. Labeled as
a Gaussian Fit in FIG. 4 is the blur sample created by 2D
Gaussian distribution of one patch of the image field shown.
The Gaussian Fit is contrasted in the figure to a non-paramet-
ric blur kernel. As seen in FIG. 4, the Gaussian Fit may be an
accurate approximation of the non-parametric blur kernel.

Blur sampling module 102 may approximate a blur sample,
and corresponding blur tuple, for each patch of the calibration
image. For example, blur sampling module 102 may compute
a Gaussian approximation that represents each blur sample
across the image. The Gaussian approximation for a blur
sample may include three elements, c, ¢, , and cor. Thus,
each patch of an image may be represented by the three
elements of the Gaussian distribution. This process may be
repeated for each calibration image, captured at different
focal lengths and aperture settings. In some embodiments, the
spatial variation of a blur may be complex. For example, if the
Gaussian approximations change in an unusual way, it may be
helpful for the system to use additional reference images 106
to better approximate the blurs.

Referring back to FIG. 1, the blur samples may be used by
blur modeling module 104 to determine a mathematical
model that describes how the blur samples vary across an
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image field of a lens (sensor) for a particular focal length and
aperture setting. Blur modeling module 104 may use the blur
samples to compute a blur model that may predict the value of
each blur tuple, given the corresponding location tuple. The
resulting blur model may be a global or local model. Further,
the blur model may model the blur in each color channel
separately. In one embodiment, a global model may include
three functions, Gc,, (%, y, 1, a), Ge,, (X, y, f, ) and G, (X, ¥,
f, a). Each of the three functions may predict one of the values
inthe blur tuple. For example, Gc,, may predict c,, Gc,,, may
predict ¢, and G, may predict cor. In one embodiment,
each of the three functions may consist of the same math-
ematical form. For example, each function may be a polyno-
mial Gy, in X, y, f, and a up to order max (N,M). In one
embodiment, f and a terms above order M may be removed
from the functions. By removing certain higher order terms in
the function, computation time may be reduced further. Fur-
ther, higher order focal length and aperture terms may only
have a trivial effect on the image blur at a particular location,
and thus, may not add significant additional accuracy, if those
terms remain. In one embodiment, the G functions may be 8th
order polynomials with fand a terms above order 3 removed.
For example, consider a function h(x,a)=1+x+a+x>+xa+a’+
X +x’a+xa’+a’. Removing the a terms above order 3 would
yield h(x,a)=1+x+a+x>+xa+x +x7a. In an embodiment with
N=8 and M=3, each polynomial function Gy, ,,may have 356
terms.

Each function G(x,y,f,a) may be fit by computing the coef-
ficient for each polynomial term. In one embodiment, G(x,y,
f,a) may be linear in the unknown coefficients. As a result, the
coefficients may be estimated using a standard least-squares
method. Each of the three G(x,y,f,a) functions for a particular
image location may have different coefficients. For each
image location, the three G(x,y,f,a) functions may be solved
(e.g., using a reduced term equation such as h(x,a) as shown
above), using the determined coefficients to determine an
amount of blur at the particular image location. The resulting
values of the Gaussian distribution (c,, c,,, cor) may repre-
sent three surfaces of the image blur.

FIG. 5illustrates surface models of one example of the G,
function of a global polynomial model that may be generated
for a lens using Gaussian parameters. The lower left image
represents G, (x,y,f,a) with a fixed aperture and focal length,
f, a. The lower right image represents G, (x,y,f,a) with a
fixed (%, y) position in the upper right corner of the sensor
field, with image blur typically being worse in a corner of the
sensor field. This surface model graph illustrates that the
affect of focal length and aperture on the Gaussian correlation
term may be minimal, even for sensor field areas in which blur
may be the greatest. Accordingly, this surface model graph
shows that removing higher order f and a terms in the poly-
nomials that represent the Gaussian parameters may not sig-
nificantly impact the model.

In some embodiments, one or more local models may be
generated in addition to, or instead of, a global model. The
local model may be used to predict the blur in small local
regions of the image instead of predicting the blur for the
entire image. In one embodiment, the local model may
include three functions: Lc,, (x,y,f,a), Lc,, (x,y,f,a), L, (X5,
f,a). FIG. 6 illustrates example surface models for L_,. The
functions may predict the values of the blur tuple in a local
region of the image. In one embodiment, each function may
be a polynomial L, ,, with x, y, f, and a terms up to order max
(N,M) with x, y terms above order N removed. For example,
L, ; may include 25 polynomial terms. Function L may be fit
by computing the coefficients of each polynomial term using
a standard least-squares method. The fit may be repeated for
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each local region. An image field may consist of a Kx-by-Ky
grid of local regions. For example, an image field may include
a10x10 local region grid of 100 local regions. In the previous
example with L, 5, 100x25 polynomial coefficients may be
required to predict one value in the blur tuple across an image.
The parameter K may be selected so that the blur is approxi-
mately constant within each local region.

Values for the model parameters Gy, and L, ,, may be
determined based on tests executed on various camera lenses
using both the global and local models described above. For
each lens test, cross-validation may be performed using both
the global and local models. To select a starting point for
cross-validation, a set of images may be collected at fixed
focal length and varied aperture. These images may be the
same as reference images 106. The Gaussian kernels may be
computed and ¢, ¢, . and corr may be plotted at each x, y
location as a function of aperture. The same may be repeated
for a fixed aperture and varied focal length: a set of images of
varied focal length and fixed aperture may be collected, Gaus-
sian kernels may be computed, and c,, ¢,,, and corr may be
plotted at each x, y location as a function of focal length. An
initial sampling resolution in f and a may be selected accord-
ing to the rate at which the Gaussian parameters vary. After
selecting a starting point for cross-validation, the complexity
of the global and local models may be determined by cross-
validating over N and M for either the global or local models.
A cross-validation dataset of Z,xZ,, images may be captured,
where 7 and Z, may be the number of samples in the fand a
dimensions. The sampling resolution may constrain the com-
plexity of Gy, 5,and Ly, ,,to M<min (Z,Z,). Cross-validation
for the global model may be performed in two stages. Let
Z=min (Z;Z,). The mean prediction error of models Gy, ,
may be plotted against N and a value may be selected for N,

letitbe N,,,,,. Then, the mean prediction error analysis may be
repeated for Gy, » Where M<Z. M may then be selected

accordingly. Cross-validation for the local model may be
performed similarly.

The optimal parameter values, M, N for the global or local
models may be the smallest values that do not result in over-
fitting and that decrease testing error. As an example, global
model parameters may be N=8, M=3. As another example,
local parameters may be N=1 and M=3. Note that other values
may result from tests on different lenses and that other values
may be used in various embodiments. The value of M may
determine the minimum number of calibration images 106
that may be collected by a user in order to accurately represent
the focal length and aperture settings. A larger number of
reference images 106 may need to be collected by a user for
larger values of M. Parameters Kx and Ky, which may define
the grid of local regions for the local model, may not be
optimized via lens testing. In some embodiments, ranges for
parameters Kx and Ky may be 10<=Kx<=20 and
10<=Ky<=20. In other embodiments, other ranges may be
used for Kx and Ky. The radius of the local model and the
calibration target 108 resolution may be chosen to match the
complexity of spatial variations. In some cases for stability
purposes, the radius may be at least 2x the width of the largest
imaged squares.

Either the global or local model may be used to predict blur
across an image due to lens imperfection. Selection of an
appropriate lens model may depend on a variety of tradeoffs.
The global model may be fit with fewer x,y samples than the
local model and therefore may require less user data collec-
tion. The global model, however, may be sensitive to noise in
fitting and, as a result, may be difficult to fit for polynomial
orders significantly larger than 8th order. Another example
where it may be more difficult to fit a high order polynomial
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is a scenario where a lens is a complex shape. The local model
may able to describe more complex blur variations and may
be more likely to generalize a wider variety of lenses. In
addition, the local model may be more stable for fitting and
may be a simpler function, due to the lower order of the local
model polynomial. The local model, however, may require
that the user cover a larger percentage of the camera field-of-
view in captured images of the calibration chart. In other
words, more captured images may be necessary for smaller
local regions. Further, the local model may require signifi-
cantly more data storage for large Kx and Ky parameters.

In some embodiments, lens modeling module 100 may
output the lens model computed by blur modeling module
104 as part of a lens profile. The lens model may, for example,
be stored to a storage medium 180, such as system memory, a
disk drive, DVD, CD, etc. The lens model may also be passed
to one or more other modules 190 for further processing. The
lens model may also be passed to image correction module
110.

Image correction module 110 may receive a lens model
from lens modeling module 100 and new image 112. In one
embodiment, image correction module 110 may output a
deblurred version of new image 112, deblurred image 114.
Not shown in FIG. 7, the deblurred image may be stored to
storage medium 180, such as system memory, a disk drive,
DVD, CD, etc. Also not shown, the deblurred image may also
be passed to one or more other modules 190 for further
processing.

In one embodiment, new image 112 is produced using the
same lens and camera combination that captured the refer-
ence images 106. New image 112 may contain any visual
content. New image 112 may include header information,
such as the focal length and aperture setting, and provide that
information to image correction module 110. In other
embodiments, image correction module 110 may receive the
focal length and aperture setting in some other manner, such
as input from a user of the system. Given a spatial location on
an image and the camera, lens, focal length and aperture used
to capture new image 112, image correction module 110 may
use the lens model to determine an amount of image blur for
the spatial location on the image. For example, image correc-
tion module 110 (or even lens modeling module 100) may
compute a blur tuple at each desired spatial position (X,y) in
the image. To compute the blur tuple at a spatial location, the
image correction module 110 may evaluate either the global
or the local lens model described above, with the correspond-
ing location tuple. The computation may produce a set of blur
tuples, each of which may be used to synthesize a 2D Gaus-
sian blur kernel (with zero mean). Using the calculated Gaus-
sian terms, the image blur at the particular location may be
corrected for the image. The local image content around each
(x,y) position may be deblurred using the Gaussian kernel.
The system may use a variety of methods to deblur the image
using the Gaussian kernel. For example, the system may use
anon-blind deconvolution method or other comparable algo-
rithm.

FIG. 7 illustrates one example of an image blur and a
reduced image blur as performed by one embodiment of the
disclosed lens modeling and blur correction system. As
shown in the exploded image section in the upper left corner
of FIG. 7, an image may be sharp in the center. Also shown, in
the exploded image section in the upper right corner, is that
the image may be blurred in areas that are not in the center of
the image. In the lower right corner, a deblurred version of the
previously blurred area of an image (as shown in the upper
right corner of FIG. 7) illustrates an example of reducing
image blur by applying the lens model to a captured image.
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Turning now to FIG. 8, one embodiment of a method for
modeling a lens and applying a lens module to deblur a new
image is shown. In one embodiment, the method may be
performed by lens modeling module 100 and image correc-
tion module 110, as described herein. In some embodiments,
the method of FIG. 8 may include additional (or fewer) blocks
than shown.

At 800, the method receives reference images 106 that
capture a pattern. In one embodiment, the pattern may be a
black and white geometric pattern with known proportions.
For example, the pattern may include an alternating pattern of
squares with dots, where the square and dots are alternating
colors. The pattern may include an array of patches of the
geometric pattern that repeat a synthesized pattern. In one
embodiment, each patch may include at least three straight
edges of different orientation. Reference images 106 may
include four images, in one embodiment. For example, the
four images may include an image taken with a camera’s
minimum focal length and minimum aperture, an image taken
with minimum focal length and maximum aperture, an image
taken with maximum focal length and minimum aperture, and
an image taken with maximum focal length and maximum
aperture. In one embodiment, if the pattern does not fill the
camera’s field-of-view for one of the reference images of a
given focal length and aperture, then the method of FIG. 8
may receive additional image(s) of the pattern, with the same
focal length and aperture, which may collectively fill the
field-of-view.

At 810, the method generates a lens model based on refer-
ence images 106. In one embodiment, generating a lens
model may include estimating a blur at each location of the
plurality of images and computing a model to fit the approxi-
mated blurs. In one embodiment, estimating the blur may
include computing a Gaussian distribution that may mini-
mizes the difference between each location of the plurality of
images and the corresponding location of the known geomet-
ric pattern (i.e., the synthesized pattern). The Gaussian dis-
tribution may represent the shape of the image blur.

The resulting lens model may be a global or locally linear
model or a combination thereof. In one embodiment, the
global model may include three functions of location (%, y),
focal length (f), and aperture (a). In some embodiments,
higher order f and a terms may be removed. For example, in
one embodiment, f and a terms above order 3 are removed.
Removing the higher order f and a terms may nevertheless
result in an accurate model, yet may also reduce complexity
and computation requirements. In one embodiment, a locally
linear model may include three functions of (x, y, f, a). The
functions may predict blur tuple values in a local region of an
image. In one embodiment, x and y terms above a certain
order may be removed. For example, x and y terms above
order 1 may be removed to once again reduce complexity and
computation requirements. The image field may consist of a
grid of local regions, each of which may have corresponding
locally linear models applied to them. In one embodiment, the
size of the regions is selected such that the blur is approxi-
mately constant within each local region.

At 820, the method may receive a new image of something
other than the geometric pattern. In one embodiment, the new
image may be captured using the same lens and camera com-
bination that captured the reference images.

At 830, the method may use the lens model and an algo-
rithm to deblur the new image. In one embodiment, the
method may compute a blur tuple at each position in the new
image by evaluating the lens model with the requisite location
tuple. Then, a set of blur tuples may be produced that may
synthesize a 2D Gaussian blur kernel. In one embodiment, the
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2D Gaussian blur kernel and an algorithm, such as a decon-
volution algorithm, may be applied to the new image to deblur
local image content around each position.

Example System

Embodiments of a lens modeling module and/or of the lens
modeling techniques as described herein may be executed on
one or more computer systems, which may interact with
various other devices. One such computer system is illus-
trated by FIG. 9. In different embodiments, computer system
1000 may be any of various types of devices, including, but
not limited to, a personal computer system, desktop com-
puter, laptop, notebook, or netbook computer, mainframe
computer system, handheld computer, workstation, network
computer, a camera, a set top box, a mobile device, a con-
sumer device, video game console, handheld video game
device, application server, storage device, a peripheral device
such as a switch, modem, router, or in general any type of
computing or electronic device.

In the illustrated embodiment, computer system 1000
includes one or more processors 1010 coupled to a system
memory 1020 via an input/output (1/0) interface 1030. Com-
puter system 1000 further includes a network interface 1040
coupled to I/O interface 1030, and one or more input/output
devices 1050, such as cursor control device 1060, keyboard
1070, and display(s) 1080. In some embodiments, it is con-
templated that embodiments may be implemented using a
single instance of computer system 1000, while in other
embodiments multiple such systems, or multiple nodes mak-
ing up computer system 1000, may be configured to host
different portions or instances of embodiments. For example,
in one embodiment some elements may be implemented via
one or more nodes of computer system 1000 that are distinct
from those nodes implementing other elements.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a mul-
tiprocessor system including several processors 1010 (e.g.,
two, four, eight, or another suitable number). Processors 1010
may be any suitable processor capable of executing instruc-
tions. For example, in various embodiments, processors 1010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 1010 may commonly, but not necessarily, implement
the same ISA.

In some embodiments, at least one processor 1010 may be
agraphics processing unit. A graphics processing unit or GPU
may be considered a dedicated graphics-rendering device for
a personal computer, workstation, game console or other
computing or electronic device. Modern GPUs may be very
efficient at manipulating and displaying computer graphics,
and their highly parallel structure may make them more effec-
tive than typical CPUs for a range of complex graphical
algorithms. For example, a graphics processor may imple-
ment a number of graphics primitive operations in a way that
makes executing them much faster than drawing directly to
the screen with a host central processing unit (CPU). In vari-
ous embodiments, the image processing methods disclosed
herein may, at least in part, be implemented by program
instructions configured for execution on one of, or parallel
execution on two or more of, such GPUs. The GPU(s) may
implement one or more application programmer interfaces
(APIs) that permit programmers to invoke the functionality of
the GPU(s). Suitable GPUs may be commercially available
from vendors such as NVIDIA Corporation, ATT Technolo-
gies (AMD), and others.
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System memory 1020 may be configured to store program
instructions and/or data accessible by processor 1010. In vari-
ous embodiments, system memory 1020 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram instructions and data implementing desired functions,
such as those described above for embodiments of a lens
modeling module are shown stored within system memory
1020 as program instructions 1025 and data storage 1035,
respectively. In other embodiments, program instructions
and/or data may be received, sent or stored upon different
types of computer-accessible media or on similar media sepa-
rate from system memory 1020 or computer system 1000.
Generally speaking, a computer-accessible medium may
include storage media or memory media such as magnetic or
optical media, e.g., disk or CD/DVD-ROM coupled to com-
puter system 1000 via I/O interface 1030. Program instruc-
tions and data stored via a computer-accessible medium may
be transmitted by transmission media or signals such as elec-
trical, electromagnetic, or digital signals, which may be con-
veyed via a communication medium such as a network and/or
a wireless link, such as may be implemented via network
interface 1040.

In one embodiment, I/O interface 1030 may be configured
to coordinate /O traffic between processor 1010, system
memory 1020, and any peripheral devices in the device,
including network interface 1040 or other peripheral inter-
faces, such as input/output devices 1050. In some embodi-
ments, 1/O interface 1030 may perform any necessary proto-
col, timing or other data transformations to convert data
signals from one component (e.g., system memory 1020) into
a format suitable for use by another component (e.g., proces-
sor 1010). In some embodiments, I/O interface 1030 may
include support for devices attached through various types of
peripheral buses, such as a variant of the Peripheral Compo-
nent Interconnect (PCI) bus standard or the Universal Serial
Bus (USB) standard, for example. In some embodiments, the
function of I/O interface 1030 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. In addition, in some embodiments some
or all of the functionality of I/O interface 1030, such as an
interface to system memory 1020, may be incorporated
directly into processor 1010.

Network interface 1040 may be configured to allow data to
be exchanged between computer system 1000 and other
devices attached to a network, such as other computer sys-
tems, or between nodes of computer system 1000. In various
embodiments, network interface 1040 may support commu-
nication via wired or wireless general data networks, such as
any suitable type of Ethernet network, for example; via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks; via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

Input/output devices 1050 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computer system 1000. Multiple
input/output devices 1050 may be present in computer system
1000 or may be distributed on various nodes of computer
system 1000. In some embodiments, similar input/output
devices may be separate from computer system 1000 and may
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interact with one or more nodes of computer system 1000
through a wired or wireless connection, such as over network
interface 1040.

As shown in FIG. 9, memory 1020 may include program
instructions 1025, configured to implement embodiments of a
lens modeling module as described herein, and data storage
1035, comprising various data accessible by program instruc-
tions 1025. In one embodiment, program instructions 1025
may include software elements of embodiments of a lens
modeling module as illustrated in the above Figures. Data
storage 1035 may include data that may be used in embodi-
ments. In other embodiments, other or different software
elements and data may be included.

Those skilled in the art will appreciate that computer sys-
tem 1000 is merely illustrative and is not intended to limit the
scope of a lens modeling module as described herein. In
particular, the computer system and devices may include any
combination of hardware or software that can perform the
indicated functions, including a computer, personal computer
system, desktop computer, laptop, notebook, or netbook
computer, mainframe computer system, handheld computer,
workstation, network computer, a camera, a set top box, a
mobile device, network device, internet appliance, PDA,
wireless phones, pagers, a consumer device, video game con-
sole, handheld video game device, application server, storage
device, a peripheral device such as a switch, modem, router,
or in general any type of computing or electronic device.
Computer system 1000 may also be connected to other
devices that are not illustrated, or instead may operate as a
stand-alone system. In addition, the functionality provided by
the illustrated components may in some embodiments be
combined in fewer components or distributed in additional
components. Similarly, in some embodiments, the function-
ality of some of the illustrated components may not be pro-
vided and/or other additional functionality may be available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-accessible medium or
a portable article to be read by an appropriate drive, various
examples of which are described above. In some embodi-
ments, instructions stored on a computer-accessible medium
separate from computer system 1000 may be transmitted to
computer system 1000 via transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Accordingly, the present disclosure may
be practiced with other computer system configurations.
Conclusion

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
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media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended that the disclosure embrace all
such modifications and changes and, accordingly, the above
description to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A method, comprising: performing by a computer:

receiving a plurality of images of a calibration target hav-

ing a pre-determined geometric pattern of repeating
patches, the plurality of images being configured to col-
lectively cover an image field of a lens, the plurality of
images including a first image with a first focal length
and a second image with a second focal length that is
different than the first focal length;

determining changes in image blur with respect to the

repeating patches indicative of a spatially variant blur

pattern by at least estimating image blur for multiple

patches of the pre-determined geometric pattern across

the plurality of images of the calibration target, the

image blur being estimated by at least:

aligning each of the repeating patches with a mathemati-
cal definition of the calibration target; and

based on said aligning, generating a plurality of blur
kernels that describe blur associated with correspond-
ing patches from the repeating patches; and

based on the image blur that is estimated from the plu-
rality of images, generating a lens model that repre-
sents the spatially variant blur pattern across the
image field of the lens.

2. The method of claim 1, wherein the generating the lens
model comprises:

estimating a blur at each location of the plurality of images;

and

computing a model to fit the approximated blurs.

3. The method of claim 2, wherein estimating the blur
includes computing a Gaussian distribution that minimizes a
difference between each location of the plurality of images
and a corresponding location of the pre-determined geomet-
ric pattern.

4. The method of claim 1, wherein the lens model com-
prises a global model, wherein the global model includes
three polynomials that describe three parameters of a Gaus-
sian kernel.

5. The method of claim 1, wherein the lens model com-
prises a plurality of locally linear models.

6. The method of claim 1, further comprising using the lens
model to correct an image blur of a new image.

7. A system, comprising:

a processor; and

a memory storing program instructions executable by the

processor to implement one or more modules configured

to:

receive a plurality of images of a calibration target hav-
ing a known geometric pattern of patches, the plural-
ity of images including a first image and a second
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image, the first image having a first focal length that
differs from a second focal length of the second
image;
identify image blur for each instance of a patch in the
geometric pattern across the plurality of images to
determine changes in image blur with respect to the
geometric pattern of patches indicative of a non-ho-
mogenous blur field, the image blur being identified
based on:
alignment of each said instance of the patch with data
that defines the calibration target; and
generation of a blur kernel that describes image blur
associated with the patch based on the alignment;
and
generate a lens model based on the identified image blur
that represents the non-homogenous blur field across
the lens.
8. The system of claim 7, wherein the lens model is gen-
erated based on:
computation of a two-dimensional Gaussian distribution of
a blur in a plurality of areas of the plurality of images,
wherein the computation includes minimization of a
difference between the plurality of areas of the plurality
of areas and the known geometric pattern; and

computation of a model to fit the Gaussian approximated
blurs.

9. The system of claim 7, wherein the lens model comprises
at least three polynomials that describe three parameters of a
Gaussian kernel.

10. The system of claim 7, wherein the lens model com-
prises a plurality of locally linear models.

11. The system of claim 7, wherein the one or more mod-
ules are further configured to using the lens model to adjust an
image blur of a new image, wherein the new image is different
from the images in the plurality of images.

12. A computer-readable storage medium other than a sig-
nal per se storing program instructions that are computer-
executable to perform operations comprising:

receiving a plurality of images of a calibration target hav-

ing a pre-determined geometric pattern of patches, the
plurality of images including a first image and a second
image, the first image having an aperture different from
an aperture of the second image;

creating blur samples from the patches of the plurality of

images, the blur samples being configured to represent

locations on the plurality of images and represent one or

more camera and lens parameters corresponding to the

locations, the blur samples being created by at least:

aligning each of the patches with a mathematical defi-
nition of the calibration target; and

based on said aligning, generating a blur kernel for each
said patch that describes image blur associated with
the patch; and

generating a global lens model and one or more local lens

models corresponding to a camera and lens combination
based on the blur samples created from the patches of the
plurality of images that represents a spatially variant blur
pattern across an image field for the camera and lens
combination.

13. The computer-readable storage medium of claim 12,
wherein the generating comprises:

computing an approximation of a blur at each location of at

least one of the plurality of images; and

computing a model to fit the approximated blurs.

14. The computer-readable storage medium of claim 13,
wherein the approximation of the blur at each location of the
at least one of the plurality of images is a Gaussian approxi-
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mation that minimizes a difference between each location of
the at least one of the plurality of images and the correspond-
ing area of the pre-determined geometric pattern.

15. The computer-readable storage medium of claim 12,
wherein the global lens model comprises one or more poly-
nomials that describe three parameters of a Gaussian kernel.

16. The computer-readable storage medium of claim 12,
wherein the one or more local lens models comprises a plu-
rality of locally linear models.

17. The computer-readable storage medium of claim 12,
wherein the operations further comprise selecting the global
lens model or one of'said local lens models to adjust an image
blur of a new image, wherein the new image is different from
the images in the plurality of images.
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